인공지능 데이터 셋의 구성 인공지능 기술 머신러닝 모델의 여러가지 목적과 과제나 학습 방식에 따라 데이터 셋은 다르게 구성될 수 있습니다. 데이터 셋을 구성할 때 주의해야 할 점은, test set의 데이터는 학습에 사용되지 않는다는 것입니다. 인공지능 기술에서 데이터 셋은 학습에 사용되는 인공지능 모델의 성능과 정확도에 영향을 미칩니다. 따라서 데이터 셋을 구성할 때는 다양한 측면을 고려해야 합니다. 예를 들어, 인공지능 모델이 이미지를 분류하는 작업을 수행한다면, 이미지 데이터가 포함되어야 합니다. 이 때, 이미지의 크기, 해상도, 색상 등과 같은 특성을 고려하여 데이터 셋을 구성해야 합니다. 데이터셋 구성에 있어서 중요한 요소는 데이터의 다양성과 균형입니다. 즉, 데이터 셋은 다양한 종류의 데이터와..